The human brain’s sensitivity to unexpected outcomes plays a fundamental role in the ability to adapt and learn new behaviors, according to a new study by a team of psychologists and neuroscientists from the University of Pennsylvania.
Using a computer-based card game and microelectrodes to observe neuronal activity of the brain, the Penn study, published March 13 in the journal Science, suggests that neurons in the human substantia nigra, or SN, play a central role in reward-based learning, modulating learning based on the discrepancy between the expected and the realized outcome.
“This is the first study to directly record neural activity underlying this learning process in humans, confirming the hypothesized role of the basal ganglia, which includes the SN, in models of reinforcement including learning, addiction and other disorders involving reward-seeking behavior,” said lead author Kareem Zaghloul, postdoctoral fellow in neurosurgery at Penn’s School off Medicine. “By responding to unexpected financial rewards, these cells encode information that seems to help participants maximize reward in the probabilistic learning task.”
Learning, previously studied in animal models, seems to occur when dopaminergic neurons, which drive a larger basal ganglia circuit, are activated in response to unexpected rewards and depressed after the unexpected omission of reward. Put simply, a lucky win seems to be retained better than a probable loss.
via 'The Unexpected Outcome' Is A Key To Human Learning.
The back up Blog of the real Xenophilius Lovegood, a slightly mad scientist.
Monday, March 16, 2009
'The Unexpected Outcome' Is A Key To Human Learning
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment