For a brief instant, it appears, scientists at Brookhaven National Laboratory on Long Island recently discovered a law of nature had been broken.
Action still resulted in an equal and opposite reaction, gravity kept the Earth circling the Sun, and conservation of energy remained intact. But for the tiniest fraction of a second at the Relativistic Heavy Ion Collider (RHIC), physicists created a symmetry-breaking bubble of space where parity no longer existed.
Parity was long thought to be a fundamental law of nature. It essentially states that the universe is neither right- nor left-handed -- that the laws of physics remain unchanged when expressed in inverted coordinates. In the early 1950s it was found that the so-called weak force, which is responsible for nuclear radioactivity, breaks the parity law. However, the strong force, which holds together subatomic particles, was thought to adhere to the law of parity, at least under normal circumstances.
Now this law appears to have been broken by a team of about a dozen particle physicists, including Jack Sandweiss, Yale's Donner Professor of Physics. Since 2000, Sandweiss has been smashing the nuclei of gold atoms together as part of the STAR experiment at RHIC, a 2.4-mile-circumference particle accelerator, to study the law of parity under the resulting extreme conditions.
The team created something called a quark-gluon plasma -- a kind of "soup" that results when energies reach high enough levels to break up protons and neutrons into their constituent quarks and gluons, the fundamental building blocks of matter.
Theorists believe this kind of quark-gluon plasma, which has a temperature of four trillion degrees Celsius, existed just after the Big Bang, when the universe was only a microsecond old. The plasma "bubble" created in the collisions at RHIC lasted for a mere millionth of a billionth of a billionth of a second, yet the team hopes to use it to learn more about how structure in the universe -- from black holes to galaxies -- may have formed out of the soup.
When the gold nuclei, traveling at 99.999% of the speed of light, smashed together, the plasma that resulted was so energetic that a tiny cube of it with sides measuring about a quarter of the width of a human hair would contain enough energy to power the entire United States for a year.
It was the equally gargantuan magnetic field produced by the plasma -- the strongest ever created -- that alerted the physicists that one of nature's laws might have been broken.
"A very interesting thing happened in these extreme conditions," Sandweiss says. "Parity violation is very difficult to detect, but the magnetic field in conjunction with parity violation gave rise to a secondary effect that we could detect." ...
via For one tiny instant, physicists may have broken a law of nature.
Some people break a few laws of nature every morning before breakfast.
2 comments:
[...] For one tiny instant, physicists may have broken a law of nature … [...]
[...] For one tiny instant, physicists may have broken a law of nature … [...]
Post a Comment