Friday, November 13, 2009

Meet Bismuth

File:Bi-crystal.jpgFile:Bismuth-crystal.jpgBismuth is a brittle metal with a white, silver-pink hue, often occurring in its native form with an iridescent oxide tarnish showing many refractive colors from yellow to blue. The spiral stair stepped structure of a bismuth crystal is the result of a higher growth rate around the outside edges than on the inside edges. The variations in the thickness of the oxide layer that forms on the surface of the crystal causes different wavelengths of light to interfere upon reflection, thus displaying a rainbow of colors. When combusted with oxygen, bismuth burns with a blue flame and its oxide forms yellow fumes.[1] Its toxicity is much lower than that of its neighbors in the periodic table such as lead, tin, tellurium, antimony, and polonium.

Although ununpentium is theoretically more diamagnetic, no other metal is verified to be more naturally diamagnetic than bismuth.[1] (Superdiamagnetism is a different physical phenomenon.) Of any metal, it has the second lowest thermal conductivity (after mercury) and the highest Hall coefficient. It has a high electrical resistance.[1] When deposited in sufficiently thin layers on a substrate, bismuth is a semiconductor, rather than a poor metal.[2]

Elemental bismuth is one of very few substances of which the liquid phase is denser than its solid phase (water being the best-known example). Bismuth expands 3.32% on solidification; therefore, it was long an important component of low-melting typesetting alloys, which needed to expand to fill printing molds.[1]

Though virtually unseen in nature, high-purity bismuth can form distinctive hopper crystals. These colorful laboratory creations are typically sold to collectors. Bismuth is relatively nontoxic and has a low melting point just above 271 °C, so crystals may be grown using a household stove, although the resulting crystals will tend to be lower quality than lab-grown crystals. ...
While bismuth was traditionally regarded as the element with the heaviest stable isotope, bismuth-209, it had long been suspected to be unstable on theoretical grounds. This was finally demonstrated in 2003 when researchers at the Institut d'Astrophysique Spatiale in Orsay, France, measured the alpha emission half-life of 209Bi to be 1.9 × 1019 years,[3] over a billion times longer than the current estimated age of the universe. Owing to its extraordinarily long half-life, for all presently-known medical and industrial applications bismuth can be treated as if it is stable and non-radioactive. The radioactivity is of academic interest, however, because bismuth is one of few elements whose radioactivity was suspected, and indeed theoretically predicted, before being detected in the laboratory.

via Bismuth - Wikipedia, the free encyclopedia.

No comments: