Friday, January 14, 2011

NASA satellites find high-energy surprises in 'constant' Crab Nebula

This view of the Crab Nebula in visible light comes from the Hubble Space Telescope and spans 12 light-years. The supernova remnant, located 6,500 light-years away in the constellation Taurus, is among the best-studied objects in the sky. (Credit: NASA/ESA/ASU/J. Hester)

The combined data from several NASA satellites has astonished astronomers by revealing unexpected changes in X-ray emission from the Crab Nebula, once thought to be the steadiest high-energy source in the sky.

"For 40 years, most astronomers regarded the Crab as a standard candle," said Colleen Wilson-Hodge, an astrophysicist at NASA's Marshall Space Flight Center in Huntsville, Ala., who presented the findings Jan. 12, 2011 at the American Astronomical Society meeting in Seattle. "Now, for the first time, we're clearly seeing how much our candle flickers."

The Crab Nebula is the wreckage of an exploded star whose light reached Earth in 1054. It is one of the most studied objects in the sky. At the heart of an expanding gas cloud lies what's left of the original star's core, a superdense neutron star that spins 30 times a second. All of the Crab's high-energy emissions are thought to be the result of physical processes that tap into this rapid spin.

For decades, astronomers have regarded the Crab's X-ray emissions as so stable that they've used it to calibrate space-borne instruments. They also customarily describe the emissions of other high-energy sources in "millicrabs," a unit derived from the nebula's output.

"The Crab Nebula is a cornerstone of high-energy astrophysics," said team member Mike Cherry at Louisiana State University in Baton Rouge, La. (LSU), "and this study shows us that our foundation is slightly askew." The story unfolded when Cherry and Gary Case, also at LSU, first noticed the Crab's dimming in observations by the Gamma-ray Burst Monitor (GBM) aboard NASA's Fermi Gamma-ray Space Telescope.

via Science Daily | NASA satellites find high-energy surprises in 'constant' Crab Nebula.

No comments: