Tuesday, April 26, 2011

Development in fog harvesting process may make water available to the world’s poor

In the arid Namib Desert on the west coast of Africa, one type of beetle has found a distinctive way of surviving. When the morning fog rolls in, the Stenocara gracilipes species, also known as the Namib Beetle, collects water droplets on its bumpy back, then lets the moisture roll down into its mouth, allowing it to drink in an area devoid of flowing water.

What nature has developed, Shreerang Chhatre wants to refine, to help the world's poor. Chhatre is an engineer and aspiring entrepreneur at MIT who works on fog harvesting, the deployment of devices that, like the beetle, attract water droplets and corral the runoff. This way, poor villagers could collect clean water near their homes, instead of spending hours carrying water from distant wells or streams. In pursuing the technical and financial sides of his project, Chhatre is simultaneously a doctoral candidate in chemical engineering at MIT; an MBA student at the MIT Sloan School of Management; and a fellow at MIT's Legatum Center for Development and Entrepreneurship.

Access to water is a pressing global issue: the World Health Organization and UNICEF estimate that nearly 900 million people worldwide live without safe drinking water. The burden of finding and transporting that water falls heavily on women and children. "As a middle-class person, I think it's terrible that the poor have to spend hours a day walking just to obtain a basic necessity," Chhatre says.

A fog-harvesting device consists of a fence-like mesh panel, which attracts droplets, connected to receptacles into which water drips. Chhatre has co-authored published papers on the materials used in these devices, and believes he has improved their efficacy. "The technical component of my research is done," Chhatre says. He is pursuing his work at MIT Sloan and the Legatum Center in order to develop a workable business plan for implementing fog-harvesting devices.

Interest in fog harvesting dates to the 1990s, and increased when new research on Stenocara gracilipes made a splash in 2001. A few technologists saw potential in the concept for people. One Canadian charitable organization, FogQuest, has tested projects in Chile and Guatemala.

Chhatre's training as a chemical engineer has focused on the wettability of materials, their tendency to either absorb or repel liquids (think of a duck's feathers, which repel water). ...

One basic principle of a good fog-harvesting device is that it must have a combination of surfaces that attract and repel water. For instance, the shell of Stenocara gracilipes has bumps that attract water and troughs that repel it; this way, drops collects on the bumps, then run off through the troughs without being absorbed, so that the water reaches the beetle's mouth.

To build fog-harvesting devices that work on a human scale, Chhatre says, "The idea is to use the design principles we developed and extend them to this problem."

To build larger fog harvesters, researchers generally use mesh, rather than a solid surface like a beetle's shell, because a completely impermeable object creates wind currents that will drag water droplets away from it. In this sense, the beetle's physiology is an inspiration for human fog harvesting, not a template. "We tried to replicate what the beetle has, but found this kind of open permeable surface is better," Chhatre says. "The beetle only needs to drink a few micro-liters of water. We want to capture as large a quantity as possible." ...

via Development in fog harvesting process may make water available to the world’s poor.

No comments: